Analysis of Stratified Surveys

Section 3.7 of Buckland et al. (2001)
Section 2.3 of Buckland et al. (2015)



Stratification

e Why stratify?

e Stratification by:

e Geographic area
e Survey
e Species / cluster size

e Limitations of Distance
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Stratification is used to:

* reduce variance and improve precision
e and for producing estimates in regions of interest

Stratify by:
 AREA or GEOGRAPHIC REGION
- the study region is partitioned into smaller regions

 SURVEY
- used when different surveys cover the same geographic area

 POPULATION/SPECIES/CLUSTER SIZE
- same geographic region with different ‘sub-stocks’ in it
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Estimate density in each sub-region

D, D,,D;

Abundance in each sub-region is given by

leAlél
N2:A252
N3:A3é3

Total size of study region
A=A+A,+4,
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Total abundance is Overall (global) density is
AD+AD,+AD,
A+A+A,

NP ~ N
N=N+N,+N, D:Z:

Note form of equation
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Example:
SCANS 11 (2016)

Small Cetaceans in
European Atlantic waters
and the North Sea
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Example of stratified data
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Data organisation hierarchy

a

Sample

| Label distance

‘ Effort 1 size
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Example: Full geographic stratification

PN

Pa2 Pa

Ei(s) Eys)  Esls)

| |

(n/L)y (n/L),  (n/L);

Select strata and fit ds to each strata ideal.dat <- whales[whalesS$SRegion.Label=="Ideal”, ]
E.g. (many ways to perform selection) whales.ideal <- ds(data=ideal.dat, key="hr”)
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Example: P, pooled

‘ Data contains different strata in Region.Label
P23 The ds function performs this stratification by default

whale.pool <- ds(whales, key="hr")

(n/L); (n/L),  (n/L);
E.g. Part of output from summary (whale.pool)

summary ..
Abundance:

Label Estimate se cVv 1cl ucl df
1 Marginal 12181.313 4638.5533 0.3807926 5499.920 26979.371 12.96742
2 Ideal 3653.313 910.0737 0.2491091 2181.589 6117.879 17.96142
3 Total 15834.626 4834.1865 0.3052921 8388.389 29890.769 15.25427
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Doing the same thing with dht 2

The same stratification (i.e. pooled P,) can be achieved with:
dht2 (model=whale.pool, flatfile=whales,

rat formula=~Region.Label,

stratification=“geographical”)

The dht 2 function can be used for more complicated stratification (as we will see later)
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Pooled vs Stratified P, Suatified

Ideal habitat n=39

Pooled n=88
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it is a Model Selection Problem

Pooled Stratum 1 Stratum 2 Stratum
Sum
Log likelihood log,(L) -180.490 -72.699 -104.676 -177.375
No. parameters (q) 2 2 2 4
364.980 149.398 213.352 362.75
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Criterion for stratification of P,:
Fit separate P, for each strata if

IC_..>2.AIC

strata

stratum
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Let L; be effort for survey i

Global density is given by

This is the same form as before, but

-

Survey 2

weighting factor now depends on effort
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Stratification by survey (with common detection function)

Need to use the dht2 function:

dht2 (model=whale.pool, flatfile=whales,

strat formula=~Region.Label) This represents different surveys
<::EEE€Eification“repiEEEE%iD
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Stratification by species (with common detection function)

. Need this column
Q Species 1 _
in data

® Species?

dht2 (model=whales.pool,
flatfile=whales,

Strat_formuldgzgﬁecié§:>
Stratification=“object™
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When to use dht 2 for density or abundance estimates

e Use density or abundance estimates from ds when:

- no stratification

- simple geographical stratification (i.e. specified in Region.Label)
- no multipliers/cue counts

- Typical encounter rate variance estimators

Rather than the estimators used to produce better variance estimates under
systematic surveys (from precision lecture)

e Call dht2 after detection function fitting with ds in other situations
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Stratification in dht?2

Theve arelow srabficalion oglions in dnl?, s chealeheel Shows how densdy &no
= variance are calculated and gives exampies of when o use them

Geographical (atratification="gecgraphical™}
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Limitations in Distance

e Distance cannot currently do multilevel stratification
in one command

e Two runs are necessary / \
— Estimate P,, E[s] and n/L by stratum PalZ Pa3
— Combine strata 1 and 2 to estimate P, / \ f
E,[s] E,[s] E3[5]

e (Care must be taken when calculating CVs because the | |
density estimates for stratum 1 and 2 have an
n/L n/L n/L
estimated P, in common /L)y /b, (n/L);
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* Small sample sizes can lead to low precision in stratum-specific estimates

* An alternative approach to reducing bias due to heterogeneity is Multiple
Covariates Distance Sampling (MCDS)

* Covariates, other than distance, are incorporated into the scale
parameter of the detection function

 MCDS can be used to fit the detection function at multiple levels e.g.
stratum-specific density estimates can be obtained even if you don't
have enough data to fit separate detection functions for each stratum

e MCDS methods are covered in the next lecture.
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Analysis of Populations
in Clusters
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* Mean of observed sizes does not change with distance

Size Bias
* Smaller clusters less detectable at larger distances

* Mean observed cluster size increases with distance
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If size bias is present, E(s)=5 will be positively biased:
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Remedy to size bias

* Recognize that detection of cluster

Depends upon cluster size
Model the dependence in the detection function
using covariates in the detection function
Details tomorrow
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