
Assessment of model 
performance

• Likelihood
• AIC
• Absolute measures of model fit

Chi-squared test
Q-Q plots
Kolmogorov-Smirnov and Cramér-von Mises tests



Likelihood

xi = distance of ith detected animal from the line.
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f(x) = probability density function of x

f(x) dx = Pr (animal was between x and x+dx from the line, 
given it was detected between 0 and w) for small dx

When distances are exact, the likelihood is given by

We fit f(x) by finding the values for the parameters of f(x) (or equivalently g(x)) that 
maximize L (or loge(L) ).



Akaike’s Information Criterion
AIC = -2loge(L) + 2q

L is the maximized likelihood (evaluated at the maximum likelihood estimates of the 
model parameters)

and q is the number of parameters in the model.

• Select the model with smallest AIC
• Gives a relative measure of fit



Limitations of AIC
Cannot be used to select between models when:

• sample size n differs

• truncation distance w differs

• data are grouped, and cut points differ

• data are grouped in one analysis and ungrouped in the other



Goodness-of-Fit

• Chi-squared test for grouped (interval) data
• if data are exact, we must specify interval cut points to perform the test

• Q-Q plots and related tests for exact data



Define u distance intervals, with ni detections in interval i, i = 1, ..., u.

Then

where

Chi-squared tests
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and        is the proportion of the area under the estimated pdf,       , that lies in 
interval i.

If the model is ‘correct’:
q = no. of parameters 
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Chaffinch line transect data



χ2 goodness-of-fit test
Goodness of fit results for ddf object

Chi-square tests
[0,12.5] (12.5,22.5] (22.5,32.5] (32.5,42.5]

Observed  16.00000000 11.00000000   11.000000   8.0000000
Expected  15.31832030 11.62653282   10.623975   9.3264854
Chisquare 0.03033539  0.03376272    0.013309   0.1886631

(42.5,52.5] (52.5,62.5] (62.5,77.5] (77.5,95]     Total
Observed    9.0000000  7.00000000    3.000000  8.000000 73.000000
Expected    7.8658030  6.37326777    6.960224  4.905391 73.000000
Chisquare 0.1635437  0.06163138    2.253286  1.952261  4.696791

P = 0.58325 with 6 degrees of freedom



Q-Q Plots and Related Tests
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Example: Rounding to zero
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Kolmogorov-Smirnov test
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Cramér-von Mises test
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Chaffinch line transect Q-Q plot 



K-S test and Cramer-von Mises test

Distance sampling Kolmogorov-Smirnov test

Test statistic = 0.0572767 p-value = 1

(p-value calculated from 100/100 bootstraps)

Distance sampling Cramer-von Mises test (unweighted)

Test statistic = 0.0367951 p-value = 0.948916



Q-Q Plot Summary
• Q-Q plots show goodness-of-fit at “high resolution” – without requiring grouping into 

intervals

• Kolmogorov-Smirnov test and Cramér-von Mises test are goodness-of-fit tests that do not 
require grouping





Making Distance Sampling Work

• Assumptions and effect of violation

• Reliable distance sampling

• Pooling robustness

• Examples of imperfect data



Recap of distance sampling

There are two stages to estimating abundance

Stage 1: given n, how many objects are in the surveyed/covered region (of size a), Na

Need to estimate Pa (or f(0) or ESW, etc.)

Stage 2: given      , how many objects are in study region (of size A), N

‘Scale up’ from what we see in the survey region to the whole study region
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Assumptions for estimating Na (stage 1)

1. Animals distributed independently of line or point
This ensures the true distribution of animals with respect to the line or point is known
Violated by non-random line/point placement
Substantial violation can produce substantial bias (e.g. roadside counts)
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Assumptions for estimating Na (stage 1)

2. All animals on the line or point are detected i.e. g(0)=1
It is a critical assumption - violation causes negative bias
e.g. if g(0)=0.8, estimates of N are 80% of true N on average

Images courtesy of FreeDigitalPhotos.net



Assumptions for estimating Na (stage 1)
3. Observation process is a ‘snapshot’

Other ways to phrase this: 

Observers are moving much faster than the animals

Animals do not move before they can be detected

Problems of independent/non-responsive movement

An animal moving independently of the observer 
(compared to moving in response to the observer) 
produces positive bias; size of bias depends on relative 
rate of movement of observer and animal, and type of 
survey.

Point transect methods, in particular, need to use 
‘snapshot’ method.

Note: movement independent of observer outwith
‘snapshot’ is fine – in this case, the same animal can be 
detected on multiple lines/transects

From Glennie et al. (2015)
Purple – animal speed 1.5x observer 
speed



Assumptions for estimating Na (stage 1)

3. Observation process is a ‘snapshot’ (continued…)

Problems of responsive movement

Responsive movement can cause large bias

It can occur within a single line/point or between lines/points

If animals are ‘driven’ from one line/point to the next ahead of the observer, positive bias will 
result.



Assumptions for estimating Na (stage 1)
4. Distances are measured accurately

Random errors cause bias. 
Bias is generally small for line transect estimators, 
Can be large for point transect estimators. 
Both are sensitive to systematic bias and to rounding to 0 distance (or angle).

Can use grouped data collection.

5. Detections are independent
Violation has little effect.  (Model selection methods for g(x), such as AIC, are mildly affected)
Remedy to model selection challenge is addressed in 

Howe, E. J., Buckland, S. T., Després‐Einspenner, M.‐L., & Kühl, H. S. (2019). Model selection with overdispersed
distance sampling data. Methods in Ecology and Evolution, 10(1), 38–47. https://doi.org/10.1111/2041‐
210X.13082



Assumptions for estimating N given Na (stage 2)
1. Lines or points are located according to a survey design with appropriate 

randomization
We use properties of the survey design to extrapolate from the surveyed/covered region 
to the study region (‘design-based’)
Non-random survey design means density in surveyed/covered region may not be 
representative of density in study region. Variance may also be biased.

Image courtesy of FreeDigitalPhotos.net
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Reliable distance sampling (1)
1. Reliable estimation of Pa (or f(0) or ESW, etc.)

In addition to the assumptions, we would like:

SHAPE CRITERION
Detection function should have 
a ‘shoulder’ (i.e. g'(0)=0)

Data that have a wide shoulder are preferable

A wide shoulder makes it 
easier to estimate area under 
rectangle (or f(0), etc.)
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(1) Reliable estimation of Pa
Good field methods will avoid a ‘spike’ like this

Avoid a) rounding distances (and angles) to zero, 
b) ‘guarding the trackline’



(1) Reliable estimation of Pa (cont.)
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Flexible detection function model can fit the data (see later)

Sample size of observations (~60-80)
- less for detection functions with ‘easy’ shapes 
- more for point transects and ‘difficult shapes’.



Reliable distance sampling (2)
2. Reliable estimation of N from Na

In addition to the assumption of randomized design, we would like a ‘large’ sample of lines or points 
(20 or more), evenly distributed through the study region

5k

see lecture on survey design

e.g. surveys of 
tiger prey in India

Photos: Ullas
Karanth



Pooling robustness
Individuals can have quite different detection functions, but this produces little bias (up to a point!)
‘Pooling robustness’ = robust to pooling of multiple detection functions
e.g. Simulation study (unpublished)  Truth = 1000 animals
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Scenario 1: animals have a 
gamma distribution of detection 
functions between min and max 
shown.

Mean estimate from simulation: 
984 animals (SE 2.3). Bias -1.6%

Scenario 2: half of animals have max 
detection function, half have 
minimum.

Mean estimate from simulation: 976 
animals (SE 2.7). Bias -2.4%



Non-ideal data
Spiked line transect data
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Heaped line transect data
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